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ABSTRACT  
 
Electronic waveform classification is a critical area of research for separating and identifying 
signals from different sources. This study aims to classify visual representations of electronic 
waveform signals using classical machine learning methods. Using a dataset consisting of 7,000 
images of 7 different electronic waveforms, the classification performance of 10 different machine 
learning algorithms was compared. In the study, the dataset was divided into training and test sets 
and all models were trained using the same feature set and evaluated according to classification 
metrics. The results revealed that Extra Trees and Random Forest algorithms were the most 
successful classifiers with 98.57% and 98.50% accuracy respectively. On the other hand, Naive 
Bayes and AdaBoost algorithms have been found to be inadequate for this type of data due to their 
low accuracy values. The findings show that bagging-based ensemble learning approaches achieve 
high accuracy in electronic waveform classification tasks and support the effectiveness of classical 
machine learning methods in the field of signal analysis. In this context, the study makes a 
significant contribution to the literature on the classification of electronic waveform datasets based 
on time-frequency images. 

Çok Sınıflı Elektronik Dalga Şekilleri Tanıma: Makine 
Öğrenmesi Yöntemlerinin Sınıflandırma 
Performanslarının Karşılaştırmalı Analizi 
 
ÖZ  
 
Elektronik dalga şekilleri sınıflandırması, farklı kaynaklardan gelen sinyalleri ayırma ve tanımlama 
açısından kritik bir araştırma alanıdır. Bu çalışmada elektronik dalga şekilleri sinyallerinin görsel 
temsillerinin klasik makine öğrenmesi yöntemleri kullanılarak sınıflandırılması amaçlanmıştır. 7 
farklı elektronik dalga şekillerine ait 7.000 görüntüden oluşan bir veri seti kullanılarak, 10 farklı 
makine öğrenmesi algoritmasının sınıflandırma performansı karşılaştırılmıştır. Çalışmada, veri seti 
eğitim ve test setlerine ayrılmış ve tüm modeller aynı özellik seti kullanılarak eğitilmiş ve 
sınıflandırma metriklerine göre değerlendirilmiştir. Sonuçlar, Ekstra Ağaçlar ve Rastgele Orman 
algoritmalarının sırasıyla %98,57 ve %98,50 doğrulukla en başarılı sınıflandırıcılar olduğunu ortaya 
koymuştur. Öte yandan, Naive Bayes ve AdaBoost algoritmalarının düşük doğruluk değerleri 
nedeniyle bu tür veriler için yetersiz olduğu görülmüştür. Bulgular, torbalama tabanlı topluluk 
öğrenme yaklaşımlarının elektronik dalga şekilleri sınıflandırma görevlerinde yüksek doğruluk elde 
ettiğini ve sinyal analizi alanında klasik makine öğrenmesi yöntemlerinin etkinliğini desteklediğini 
göstermektedir. Bu bağlamda, çalışma elektronik dalga şekilleri veri kümelerinin zaman-frekans 
görüntülerine dayalı sınıflandırılması konusunda literatüre anlamlı bir katkı sağlamaktadır. 
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1. Introduction  
 

Today, the detection, classification and interpretation of electronic waveform signals have strategic 
importance in a wide variety of fields such as defense industry, remote sensing, communication 
systems, medical devices and industrial automation [1-4]. In particular, accurate separation of 
electronic waveforms plays a critical role in improving system performance and correctly interpreting 
environmental variables. The fact that these signals often come from different physical sources further 
complicates the classification problem. Analyzing these complex, multi-dimensional and noisy data 
using classical methods is both time-consuming and often fails to provide the desired accuracy. In this 
context, machine learning (ML) methods offer alternative and effective solutions in the field of signal 
processing with their ability to learn, classify and predict patterns in large datasets. In particular, 
presenting the features extracted from time-frequency images to ML algorithms gives promising 
results in terms of accuracy and processing efficiency [5-7]. As a matter of fact, various studies have 
shown that classical machine learning algorithms such as SVM, Random Forest, Extra Trees, AdaBoost 
give very successful results in signal classification tasks. 

 
In studies specifically on the classification of electronic waveforms, visual representations of signals 
obtained in the time-frequency domain provide a valuable resource in terms of feature extraction and 
classification performance. The statistical and texture-based features obtained from these images 
constitute suitable input data for classical machine learning algorithms. This enables more effective 
and faster analysis of data that is difficult to analyze with traditional signal processing methods. This 
study aims to classify 7 different electronic waveforms based on their visual representations using 
classical machine learning algorithms. A total of 7,000 electronic waveform images were used, with 
1,000 examples for each class. By resizing the images, converting from RGB to flat vector, digitizing the 
class labels and standardizing the data, the raw visual data was classified with various machine 
learning algorithms and the success rates were compared. The machine learning methods used are: 
Extra Trees, Random Forest, Decision Tree, SVM, Gradient Boosting, Logistic Regression, KNN, LDA, 
Naive Bayes and AdaBoost. As a result of the applied method, the highest success was achieved with 
Extra Trees (98.57% accuracy, ROC-AUC ≈ 0.9998) and Random Forest (98.50% accuracy, ROC-AUC ≈ 
0.9996) algorithms. In addition, while the Decision Tree algorithm showed moderate performance with 
92.93% accuracy, models such as Gradient Boosting (88.92%) and Logistic Regression (87.79%) 
showed lower performance. Naive Bayes and AdaBoost algorithms, on the other hand, failed to show 
sufficient success in the classification task with 68.64% and 39.35% accuracy rates, respectively. These 
findings show that ensemble learning methods are more effective than classical algorithms and stand 
out in the classification of electronic waveforms. 

 
The method of our study is structured with an experimental modeling design based on the classification 
of visual electronic waveforms. The entire dataset was divided into training and testing, models were 
trained with the same parameter configurations and evaluated on success metrics (Accuracy, Recall, 
Precision, F1-score, Specificity and ROC-AUC). In this respect, the study provides both applied and 
comparative data on how classical machine learning algorithms can be used in the field of analysis of 
electronic waveforms. Therefore, this study reveals that electronic waveform data consisting of time-
frequency images can be classified with high accuracy by classical machine learning methods; and 
provides important contributions to the processing of similar data types in the literature. The rest of 
the study is structured as follows: The second section comprehensively discusses the signal 
classification and machine learning based approaches in the relevant literature. The third section 
provides detailed information about the dataset, methods and algorithms used in the study. In the 
fourth section, the experimental results are presented with tables and graphs; performance 
comparisons are made. In the fifth and last section, the results are evaluated in general, the study 
limitations and future suggestions are discussed. 

 

2. Related Works 
 
Studies in the literature show that after the raw signals are passed through pre-processing steps and 
represented in time, frequency or combined domains, the features derived from these representations 
are analyzed with machine learning algorithms. These methods are widely used to increase the 
discrimination power between classes, discover complex data patterns and increase classification 
accuracy. Machine learning-based approaches are trained with different feature sets depending on the 
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structure of the signal and the application area, and ultimately offer high accuracy, generalization 
success and interpretability. In this respect, machine learning models stand out as methods that 
provide reliable, flexible and effective solutions in the signal classification literature. 
 
In a study performed on the PTB-ECG dataset, electrocardiogram (ECG) signals were converted into 
time-frequency images using the smoothed pseudo Wigner-Ville distribution (SPWVD) method and 
these images were classified using a Convolutional Neural Network (CNN). The obtained achievements 
such as 98.96% accuracy, 97% F1 score and 98% specificity reveal the high performance of the method. 
In addition, the study was compared with one of the traditional methods, Support Vector Machine 
(SVM); it was reported that SVM provided lower success with 85.1% accuracy. This shows that the 
SPWVD-CNN approach is more effective in classifying ECG signals [8]. In another study, researchers 
obtained time-frequency images (TFI) using the Choi–Williams distribution to classify LPI radar waves, 
automatically cropped the high-energy regions in these images, and performed dimension reduction 
with PCA (Principal Component Analysis). Both binary and multi-class SVM models were used on these 
reduced TFIs. By applying SVM parameter optimization, significant improvements were reported 
compared to other methods in the literature under low-SNR conditions. The cross-validation results 
obtained in the study showed superiority over classical methods in classification performance, 
especially in low-SNR environments [9]. 
 
In a different study, a hybrid method based on Wavelet-ICA and support vector machines (SVM) was 
proposed to automatically detect and remove biological artifacts such as eye blinks in EEG signals. SVM, 
trained with statistical features such as variance, skewness, entropy and amplitude range, 
distinguishes artifact components with high accuracy and preserves the meaningful part of the EEG 
signal. In tests conducted with EEGLAB data, the method showed superior performance compared to 
traditional thresholding methods with 99.1% accuracy and 97.1% sensitivity [10]. In another study, 
the classification of positive and negative emotions was aimed using EEG signals and channel selection 
was applied as a preprocessing step. In the study conducted on the DEAP dataset, theta band features 
extracted with the DWT method were classified with MLPNN and kNN algorithms; the five EEG 
channels that gave the best performance were selected. 77.14% accuracy was obtained with MLPNN 
and 72.92% with kNN. The results show that the channel and feature selection significantly increase 
the classification performance in EEG-based emotion recognition [11]. 
 
In another study, automatic machine learning based AUTO-SKLEARN system is developed for the 
identification of radar broadcast source signals. The system automates algorithm selection and 
hyperparameter tuning using Bayesian optimization and meta-learning methods, thus reducing the 
need for domain experts. In the experiments, the AUTO-SKLEARN algorithm was compared with the 
traditional k-means algorithm; AUTO-SKLEARN showed superior performance in terms of both 
accuracy rate (up to 96%) and stability. The high success rate in radar signal recognition task under 
different modulation and operating scenarios demonstrates the reliability and applicability of the 
method. In conclusion, this study shows that automatic machine learning approaches provide effective 
solutions in the field of radar signal processing [12].  
 
In a study based on time-frequency analysis in the classification of electrocardiogram (ECG) signals, 
ECG signals were converted into time-frequency images using the smoothed pseudo Wigner-Ville 
distribution (SPWVD) method and the resulting images were classified using the Convolutional Neural 
Network (CNN) model. In experiments conducted on the PTB dataset, the model demonstrated high 
success by achieving 98.96% accuracy, 97% F1 score and 98% specificity. In addition, the study was 
compared with one of the traditional methods, Support Vector Machine (SVM); it was stated that SVM 
provided 85.1% accuracy. The obtained results show that SPWVD representations provide a powerful 
feature extraction in distinguishing normal and abnormal beats in ECG signals and are promising for 
clinical applications together with deep learning based models [13]. 
 
In another study, individual and combined finger movements were classified using surface EMG signals 
with SVM and ANN algorithms. After feature extraction, dimensionality reduction was applied with PCA 
and LDA, and the classification accuracy was evaluated with different combinations. The highest 
success rate was obtained with 96.67% accuracy in the PCA + ANN combination. The results show that 
this method can be effective especially in biomedical applications such as prosthetic hand control [14]. 
 
In another study, a method based on S-transform and Convolutional Neural Network (CNN) was 
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proposed for the classification of power quality degradation (PQD) signals. By obtaining the time-
frequency matrices of the signal with the S-transform, these matrices were presented as input to the 
CNN and classification was performed with the SoftMax layer. Compared to traditional methods, the 
proposed method stands out with its high classification accuracy (close to 99%) and strong noise 
immunity. In particular, consistent performance even at different signal-to-noise ratios has 
demonstrated the robustness of the method. In addition, the proposed model operates with lower 
processing time compared to methods such as PCA-SVM and PNN, indicating that it offers a practical 
and effective solution for real-time power system monitoring applications [15]. 
 

3. Materials and Methods 
 
In this study, a multi-class machine learning approach is adopted to classify electronic waveforms 
based on their visual representations. First, a new dataset of 496×369 pixels in size consisting of a total 
of 7,000 images belonging to 7 different signal classes is prepared [16]. All signals were rescaled to 
64×64 pixels. The images were converted from RGB format to one-dimensional vector structure to 
make them suitable for numerical analysis, labels were digitized and features were standardized. 
Following these preprocessing steps, the dataset was split into training (80%) and testing (20%). 
Modeling was performed using various machine learning algorithms (Extra Trees, Random Forest, 
Decision Tree, SVM, Gradient Boosting, Logistic Regression, KNN, LDA, Naive Bayes, AdaBoost) that can 
create both linear and non-linear decision boundaries for classification operations. Thus, the 
classification performances of different algorithms on the dataset were evaluated comparatively. The 
scheme of the method architecture used in the study is shown in Figure-1. 

 

 
Figure 1. The method architecture used 

 

 3.1. Dataset 

 
The dataset used in this study is a signal image set consisting of 7 classes. The dataset is divided into 7 
classes, each representing a different signal type: noisy_sinus, noisy_square, ramp, sawtooth, sinus, 
square and triangle. The dataset consists of 7,000 samples in total, with 1,000 signal images belonging 
to each class. The signals in question were created to solve a multi-class classification problem and each 
signal type was classified by labeling. The diversity of the dataset is important in terms of representing 
different signal patterns, testing the discriminatory power of machine learning algorithms and 
increasing comparability between methods. The contents and images of the dataset used are shown in 
Table 1. 
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Table 1. Information on the dataset of electronic waveforms used in the study. 

Class Name Explanation Number of 
Data 

Sample Image 

Noisy sinus  

The mathematical model consists of 
social hierarchy, prey pursuit, 
encirclement and attack. It represents a 
sinusoidal waveform with added noise. 

1000 

 

Noisy square  It consists of noisy square wave signals. 1000 

 

Ramp 
They are signals with amplitude that 
increases or decreases linearly with 
time. 

1000 

 

Sawtooth  

They are sawtooth shaped signals that 
include linear increases and sudden 
decreases. 

1000 

 

Sinus 
It contains pure and regular sinusoidal 
waveform. 

1000 

 

Square 
It is a square waveform that transitions 
suddenly between high and low levels. 

1000 

 

Triangle 
It represents a triangular waveform 
that rises and falls symmetrically. 

1000 

 
 Total 7000  

3.2. Data Preprocessing 
 
The images of electronic waveforms used in the study were rescaled to 64×64 pixels to ensure that all 
samples were represented in a fixed size. The images in RGB format were flattened and converted to 
one-dimensional vectors and made compatible with machine learning algorithms. Class labels were 
digitized with LabelEncoder, and the attributes were standardized with the StandardScaler method. 
These steps were implemented to improve the learning process of the algorithms and to reduce the 
effect of data at different scales. Finally, the dataset was divided into 80% training and 20% testing. 
 
3.3. Methods 
 
In this study, classical machine learning algorithms were used to classify different electronic 
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waveforms based on their visual representations. The applied methods were selected from models that 
can draw both linear and nonlinear decision boundaries; also, both single learners and ensemble 
approaches were included. In this way, it was aimed to evaluate the performance differences of the 
models used against various data patterns in a more holistic way. Below, the basic working principles 
of the 10 different machine learning methods used in the study, their place in the literature, and their 
known strengths and weaknesses in such classification problems are summarized. 
 
3.3.1. Extra Trees (Extremely Randomized Trees) 
 
Extra Trees algorithm is an ensemble learning method that works by creating multiple decision trees, 
similar to Random Forest. However, Extra Trees provides higher diversity by randomly selecting the 
data used in each tree and completely randomly determining the threshold values at the branching 
points. This structure can increase the classification accuracy while preventing overfitting, especially 
in high-dimensional and complex datasets [1]. 
 
3.3.2. Random Forest 
 
The Random Forest algorithm is an ensemble model that creates many decision trees based on the 
bagging (bootstrap aggregating) method and makes predictions by combining the outputs of these 
trees with a majority vote. Since each of the decision trees is trained with different random subsamples 
and features, the model has a high generalization ability. It stands out by providing stable results in 
noisy and complex datasets [2]. 
 
3.3.3. Decision Trees 
 
Decision trees are an intuitive and interpretable method that classifies data by dividing them into 
branches according to a specific target variable. The data is split into two using an attribute at each 
node of the tree and decisions are made at the leaf nodes. However, if the data is too complex or the 
tree depth is too large, the model may tend to overfit [3]. 
 
3.3.4. Support Vector Machine (SVM) 
 
Support Vector Machines (SVM) is a powerful classification method based on supervised learning. Its 
main purpose is to find a hyperplane (decision boundary) that best separates data belonging to 
different classes. In linearly separable data, classes are separated from each other by creating a 
hyperplane with maximum margin. In nonlinear cases, the data is made separable by transforming it 
into a higher dimensional feature space via kernel functions. In this way, SVM can work effectively on 
both linear and nonlinear classification problems. Commonly used kernel functions include linear, 
polynomial, RBF (radial basis function) and sigmoid kernels. Due to its robust structure against noise 
and high generalization performance even on small sample sets, it is preferred in many areas such as 
biomedical signal processing, text mining, and image recognition [10]. 
3.3.5. Gradient Boosting 
 
Gradient Boosting is a boosting method that creates a stronger model by repeatedly adding weak 
classifiers (usually short decision trees). Each new tree is trained by focusing on examples that the 
previous model classified incorrectly. Although this method is known for providing high accuracy, it is 
more sensitive than other methods in terms of hyperparameter tuning and training time [4]. 
 
3.3.6. Logistic Regression 
 
Logistic regression is one of the basic methods that perform classification by creating a linear decision 
boundary. Although it was developed especially for binary classification, it can also be applied to 
multiple classes. It models the relationship between input variables and the class via the logit function. 
It is preferred as a basic starting model due to its easy interpretability [5]. 
 
3.3.7. K-Nearest Neighbors (KNN) 
 
KNN is an example-based method where the decision is made based on the class labels of the K nearest 
neighbors in the training set of a new example to be classified. Despite its assumption-free and simple 
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structure, this algorithm can be slow on large and high-dimensional datasets. In order to obtain 
accurate results, the selection of the appropriate distance metric and K value is critical [6]. 
 
3.3.8. Linear Discriminant Analysis (LDA) 
 
LDA is a linear method used for both classification and dimensionality reduction. Its aim is to find a 
projection direction that minimizes the intra-class variance while maximizing the inter-class variance. 
It gives very successful results, especially when the classes have a normal distribution [7]. 
 
3.3.9. Naive Bayes 
 
Naive Bayes classifier is based on Bayes theorem and assumes conditional independence among 
features. Despite this strong assumption, it can provide effective and fast results in many practical 
cases. It is frequently used in areas such as text mining, email filtering and sentiment analysis [8]. 
 
3.3.10. AdaBoost (Adaptive Boosting) 
 
AdaBoost trains weak learners (e.g., single-layer decision trees) sequentially, giving more weight to 
misclassified examples at each step. The result is a strong classifier based on the weighted votes of all 
models. It may perform poorly on noisy data, but it provides high accuracy when well structured [9]. 
 
3.4. Performance Metrics 
 
Experimental results were evaluated according to 6 different metrics. TP, TN, FP, FN structures were 
used in the calculation of these metrics. 
 
TP (True Positive): An example belonging to the true positive class is correctly classified as positive by 
the model. 
 
TN (True Negative): An example belonging to the true negative class is correctly classified as negative 
by the model. 
 
FP (False Positive): A true negative example is incorrectly assigned to the positive class by the model. 
 
FN (False Negative): A true positive example is incorrectly assigned to the negative class by the model. 
 
3.4.1. Accuracy  
 
It is the ratio of the examples that the model correctly classified to the total number of examples. It is 
the most common metric that shows the general performance level. 
 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(TP + TN + FP + FN)
       (1)  

 
 
3.4.2. Recall (Sensitivity / True Positive Rate) 
 
It is the rate at which n true positive classes are correctly identified by the model. It is used especially 
in cases where it is important not to miss examples. 
 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(TP +  FN)
       (2) 

  
 
3.4.3. Precision 
 
It shows how many of the model's positive predictions are correct. It is important in situations where 
false alarms need to be reduced. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(TP + FP)
       (3)  

 
 
3.4.4. F1 Score 
 
It is the harmonic mean of Precision and Recall values. It is used for evaluation in unbalanced class 
distributions. 
 
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×(Precision × Recall)

(Precision + Recall)
        (4) 

 
 
3.4.5. Specificity (True Negative Rate) 
 
It is the rate at which negative classes are correctly identified. It is important to evaluate the impact of 
false positives. 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(TN + FP)
       (5)  

 
 
3.4.6. ROC-AUC (Receiver Operating Characteristic - Area Under Curve) 
 
This metric measures the ability of a classification model to distinguish between positive and negative 
classes. It is the area that summarizes the classification performance of the model at different threshold 
values, measuring the balance between accuracy and error. Values close to 1 indicate high success. 
 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)
1

𝑂
        (6) 

 

𝑇𝑃𝑅(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒) =
𝑇𝑃

(TP + FN)
       (7) 

 

𝐹𝑃𝑅(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒) =
𝑇𝑃

(TP + FN)
       (8) 

 

4. Results and Discussion  
 
In this study, 10 different machine learning algorithms were evaluated for the classification of different 
signal types based on image representations. Comprehensive metrics such as accuracy, recall, 
precision, F1 score, specificity and ROC-AUC (Receiver Operating Characteristic - Area Under Curve) 
were used for performance analysis. The numerical results obtained are shown in Table 2, and the 
complexity matrices of each model are shown in Figure 2. 
 

Table 2. Classification results using machine learning methods. 

Model Accuracy Recall Precision F1 Score Specificity ROC-AUC 

Extra Trees 0.98571 0.98604 0.98582 0.98575 1.00000 0.99980 

Random Forest 0.98500 0.98525 0.98523 0.98503 1.00000 0.99959 

Decision Tree 0.92929 0.92995 0.92906 0.92907 0.98333 0.95910 

Support Vector Machine 0.92429 0.92449 0.92476 0.92344 1.00000 0.99497 

Gradient Boosting 0.88929 0.88737 0.89700 0.88718 1.00000 0.97852 
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Logistic Regression 0.87786 0.87584 0.88781 0.87859 1.00000 0.95170 

KNN 0.84714 0.85409 0.90180 0.86065 1.00000 0.98191 

LDA 0.81857 0.81640 0.82922 0.80969 0.83465 0.90580 

Naive Bayes 0.68643 0.68726 0.69002 0.67966 1.00000 0.84863 

AdaBoost 0.39357 0.40458 0.39807 0.36664 1.00000 0.79010 
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Figure 2. Complexity matrices of machine learning algorithms. a) Extra Trees, b) Random Forest, c) Decision Tree, d) SVM, e) 
Gradient Boosting, f) Logistic Regression, g) KNN, h) LDA, i) Naive Bayes, j) AdaBoost. 
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When Table 2 and Figure 2 are examined, the model with the highest success was the Extra Trees 
method. This method provided the highest overall performance in the study with 98.57% accuracy, 
98.60% sensitivity and 99.98% ROC-AUC value. When Figure 2 is examined, it is seen that the model 
distinguishes all classes with very high accuracy. Similarly, the Random Forest algorithm produced 
successful results with 98.50% accuracy and 99.96% ROC-AUC values. These two ensemble methods 
optimized the classification performance by using the collective power of decision trees. The Decision 
Tree model, with an accuracy rate of 92.92%, provided a good starting level among the algorithms 
based on the basic tree structure. It was observed that the discriminative performance between classes 
was moderately balanced. The Support Vector Machine (SVM) model has an accuracy rate of 92.42% 
and a ROC-AUC score of 99.49%. It is understood that there was confusion, especially between some 
classes, but overall success was high. Gradient Boosting (88.93% accuracy) and Logistic Regression 
(87.78% accuracy) showed moderate performance as nonlinear and linear models. K-Nearest 
Neighbors (KNN) algorithm remained below the average in the study with 84.71% accuracy rate; 
especially the confusion rate increased between some classes. The Linear Discriminant Analysis (LDA) 
model achieved 81.85% accuracy and 90.58% ROC-AUC score. However, its performance was limited 
due to the class distributions not meeting the hypothetical requirements. Naive Bayes showed that its 
structure based on statistical assumptions was not suitable for this data structure with 68.64% 
accuracy. The AdaBoost algorithm showed the lowest success with 39.36% accuracy. It was determined 
that there was serious confusion between the classes. 
 
This study demonstrates that ensemble learning algorithms (Extra Trees, Random Forest) in particular 
provide high success in signal-based multi-class image classification problems. It has been understood 
that ensemble approaches are more stable and error-tolerant compared to single learners (Decision 
Tree, Logistic Regression). As a result, model selection is of great importance in the classification of 
signal patterns; the evaluation of different metrics together plays a critical role in understanding class 
imbalances and overall performance. 

 
5. Conclusion 
 
This study aims to classify electronic waveforms based on their visual representations in the time-
frequency domain using machine learning algorithms. In the experiments conducted on a dataset 
consisting of 7,000 images of 7 different signal types, 10 different classical machine learning algorithms 
were compared and each was evaluated with the same set of features. The results revealed that 
especially ensemble-based methods (Extra Trees and Random Forest) provide high classification 
performance. 
 
Performance analyses were performed with various metrics such as accuracy, precision, sensitivity, 
specificity, F1 score and ROC-AUC. Extra Trees algorithm showed the highest success with 98.57% 
accuracy rate and 0.9998% ROC-AUC value. Similarly, the Random Forest algorithm has also produced 
quite successful results. However, Naive Bayes models based on statistical assumptions and AdaBoost 
models based on weak learners were inadequate for this type of signal data due to their low accuracy 
values. The study comprehensively compares the performance differences of different algorithms on 
signal data to reveal which types of models are more effective in such classification tasks. In particular, 
bagging-based ensemble methods have been found to offer high generalization capacity on datasets 
containing noisy and complex time-frequency images.  
 
As a result, this study shows that classical machine learning methods can provide an effective solution 
for the classification of electronic waveforms based on time-frequency analysis. The findings obtained 
can contribute not only to the field of signal processing, but also to application areas such as image-
based classification and industrial automation. In future studies, more detailed analysis of such visual 
signal representations with deep learning architectures is among the potential development areas that 
can further increase model performance. 
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